Fluorescence labeling of carbonylated lipids and proteins in cells using coumarin-hydrazide

نویسندگان

  • Venukumar Vemula
  • Zhixu Ni
  • Maria Fedorova
چکیده

Carbonylation is a generic term which refers to reactive carbonyl groups present in biomolecules due to oxidative reactions induced by reactive oxygen species. Carbonylated proteins, lipids and nucleic acids have been intensively studied and often associated with onset or progression of oxidative stress related disorders. In order to reveal underlying carbonylation pathways and biological relevance, it is crucial to study their intracellular formation and spatial distribution. Carbonylated species are usually identified and quantified in cell lysates and body fluids after derivatization using specific chemical probes. However, spatial cellular and tissue distribution have been less often investigated. Here, we report coumarin-hydrazide, a fluorescent chemical probe for time- and cost-efficient labeling of cellular carbonyls followed by fluorescence microscopy to evaluate their intracellular formation both in time and space. The specificity of coumarin-hydrazide was confirmed in time- and dose-dependent experiments using human primary fibroblasts stressed with paraquat and compared with conventional DNPH-based immunocytochemistry. Both techniques stained carbonylated species accumulated in cytoplasm with strong perinuclear clustering. Using a complimentary array of analytical methods specificity of coumarin-hydrazide probe towards both protein- and lipid-bound carbonyls has been shown. Additionally, co-distribution of carbonylated species and oxidized phospholipids was demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ligand-directed dibromophenyl benzoate chemistry for rapid and selective acylation of intracellular natural proteins.

A rapid and selective ligand-directed chemical reaction was developed for the acylation of proteins in living cells on the basis of ligand-directed chemistry. By fine tuning the reactivity and stability of the phenyl ester derivatives, we successfully identified ortho-dibromophenyl benzoate as the optimal reactive motif. It was sufficiently stable in an aqueous buffer, hydrolyzing less than 10%...

متن کامل

Enriching carbonylated proteins inside a microchip through the use of oxalyldihydrazide as a crosslinker.

We report a proof of principle study for the use of oxalyldihydrazide as a crosslinker for enrichment of carbonylated proteins within a microfluidic chip. Surface modification steps are characterized and analyzed using analytical techniques. We use oxidized cytochrome c as our model protein and demonstrate the chip's ability to capture carbonylated targets. After 100 min of continuous loading, ...

متن کامل

Heparan sulfate degradation products can associate with oxidized proteins and proteasomes.

The S-nitrosylated proteoglycan glypican-1 recycles via endosomes where its heparan sulfate chains are degraded into anhydromannose-containing saccharides by NO-catalyzed deaminative cleavage. Because heparan sulfate chains can be associated with intracellular protein aggregates, glypican-1 autoprocessing may be involved in the clearance of misfolded recycling proteins. Here we have arrested an...

متن کامل

In vitro Labeling of Neural Stem Cells with Poly-L-Lysine Coated Super Paramagnetic Nanoparticles for Green Fluorescent Protein Transfection

Background: The magnetic nanoparticle-based transfection method is a relatively new technique for delivery of functional genes to target tissues. We aimed to evaluate the transfection efficiency of rat neural stem cell (NSC) using poly-L-lysine hydrobromide (PLL)-coated super paramagnetic iron oxide nanoparticles (SPION). Methods: The SPION was prepared and coated with PLL as transfection agent...

متن کامل

Fluorophores for live cell imaging of AGT fusion proteins across the visible spectrum.

O6-alkylguanine-DNA alkyltransferase (AGT) fusion proteins can be specifically and covalently labeled with fluorescent O6-benzylguanine (O6-BG) derivatives for multicolor live cell imaging approaches. Here, we characterize several new BG fluorophores suitable for in vivo AGT labeling that display fluorescence emission maxima covering the visible spectrum from 472 to 673 nm, thereby extending th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015